Curing some of the most vexing diseases first requires navigating the world’s most complex structure – the human brain. So, USC scientists have created the most detailed atlas yet of the brain’s memory bank.
Cartographers of the cranium, a USC research team has illustrated the internal circuitry of the hippocampus in detail that would make the great ancient mapmaker, Ptolemy, proud. Using fluorescent tracers and 3-D animation, the scientists show structures, nerve connections and functions in vivid detail. The study appears today in the journal Nature Neuroscience.
“Like a new atlas, we’ve constructed the most detailed diagram of the hippocampus to date,” said Michael S. Bienkowski, lead author of the study and a researcher at the USC Institute for Neuroimaging and Informatics in the Keck School of Medicine of USC. “With a better map, we can see each region and how it functions. A better map is a resource scientists can use to better understand the hippocampus and how its degeneration leads to diseases.”
The human hippocampus sits at the base of the brain and it’s shaped like a seahorse. It stores memories, helps regulate emotions and guides navigation by spatial processing. It’s the first part of the brain impaired by Alzheimer’s and hippocampus degeneration can cause epilepsy and other diseases.
In this case, scientists worked on a mouse brain because it’s organized similar to a human brain. Scientists can use the new map of the hippocampus to deliver genetically-targeted drugs to specific neurons with fewer side effects, said senior author, Hong-Wei Dong, USC professor of neurology and director of the USC Center for Integrated Connectomics (CIC).
The work is part of the Mouse Connectome Project, a USC-led effort that collects lots of data about neural connections in the brain and shares it publicly with researchers in more than 100 countries.